An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining.

نویسندگان

  • Barbaros Çetin
  • Mehmet Bülent Özer
  • Erdem Çağatay
  • Süleyman Büyükkoçak
چکیده

In this study, acoustophoresis and dielectrophoresis are utilized in an integrated manner to combine the two different operations on a single polydimethylsiloxane (PDMS) chip in sequential manner, namely, particle wash (buffer exchange) and particle separation. In the washing step, particles are washed with buffer solution with low conductivity for dielectrophoretic based separation to avoid the adverse effects of Joule heating. Acoustic waves generated by piezoelectric material are utilized for washing, which creates standing waves along the whole width of the channel. Coupled electro-mechanical acoustic 3D multi-physics analysis showed that the position and orientation of the piezoelectric actuators are critical for successful operation. A unique mold is designed for the precise alignment of the piezoelectric materials and 3D side-wall electrodes for a highly reproducible fabrication. To achieve the throughput matching of acoustophoresis and dielectrophoresis in the integration, 3D side-wall electrodes are used. The integrated device is fabricated by PDMS molding. The mold of the integrated device is fabricated using high-precision mechanical machining. With a unique mold design, the placements of the two piezoelectric materials and the 3D sidewall electrodes are accomplished during the molding process. It is shown that the proposed device can handle the wash and dielectrophoretic separation successfully.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.

Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) ...

متن کامل

Numerical Simulation of Particle Separation in the Fluid Flow in a Microchannel Including Spiral and Acoustic Regions

Particulate separation has many applications in medicine, biology and industry. In this research, the separation of polystyrene particles with a diameter of 10, 20 and 30 μm in the fluid flow of a microchannel is investigated. The microchannel consists of a spiral region and a straight region under the influence of acoustic waves. In the spiral region, the particles under hydrodynamic effects u...

متن کامل

Combination Ultrasonic- Dielectrophoretic Particle Traps for Particle Trapping and Sample Purification in a Microfluidic Channel

Ultrasonic and dielectrophoretic particle manipulation have been studied for particle trajectory modification and particle trapping in microfluidic channels. We report an approach that combines dielectrophoresis (DEP) and ultrasonic fields to trap and concentrate particles and cells in an aqueous suspension. By simultaneously applying electric and ultrasonic fields to the sample, the favorable ...

متن کامل

Dielectrophoretic effect of nonuniform electric fields on the protoplast cell

In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, micro‌organisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...

متن کامل

Fabrication of Microstructures Embedding Controllable Particles Inside Dielectrophoretic Microfluidic Devices

This paper presents a method of particle manipulation by dielectrophoresis (DEP) and immobilization using photo‐crosslinkable resin inside microfluidic devices. High speed particle manipulation, including patterning and concentration control by DEP was demonstrated. Immovable and movable microstructures embedding particles were fabricated on‐ chip. Several microelec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomicrofluidics

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2016